Institution: Vassar College
Department: Biology Department
24 Raymond Avenue
Poughkeepsie NY 12604
Department: Biology Department
24 Raymond Avenue
Poughkeepsie NY 12604
Hubbard Brook Role: Investigator, Scientific Coordinating Committee
Phone: (845) 437-7418
Email: lychristenson@vassar.edu
ORCID: 0000-0003-3226-4337
Website: https://biology.vassar.edu/bios/lychristenson.html
Email: lychristenson@vassar.edu
ORCID: 0000-0003-3226-4337
Website: https://biology.vassar.edu/bios/lychristenson.html
Research Interests
Plant/Soil/Animal Interactions and the Impact of Pollution on Soils and Vegetation. Integrated Terrestrial Ecosystem Processes, Climate Change and biodiversity.
Hubbard Brook Publications by this Author
4549695
christenson
1
apa
50
date
desc
436
https://hubbardbrook.org/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22TDZS3WXC%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Groffman%20et%20al.%22%2C%22parsedDate%22%3A%222018-05-12%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGroffman%2C%20P.%20M.%2C%20Driscoll%2C%20C.%20T.%2C%20Dur%26%23xE1%3Bn%2C%20J.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Fuss%2C%20C.%2C%20Likens%2C%20G.%20E.%2C%20Lovett%2C%20G.%2C%20Rustad%2C%20L.%2C%20%26amp%3B%20Templer%2C%20P.%20H.%20%282018%29.%20Nitrogen%20oligotrophication%20in%20northern%20hardwood%20forests.%20%3Ci%3EBiogeochemistry%3C%5C%2Fi%3E%2C%201%26%23x2013%3B17.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10533-018-0445-y%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10533-018-0445-y%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nitrogen%20oligotrophication%20in%20northern%20hardwood%20forests%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Dur%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Colin%22%2C%22lastName%22%3A%22Fuss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gene%20E.%22%2C%22lastName%22%3A%22Likens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gary%22%2C%22lastName%22%3A%22Lovett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%5D%2C%22abstractNote%22%3A%22While%20much%20research%20over%20the%20past%2030%20years%20has%20focused%20on%20the%20deleterious%20effects%20of%20excess%20N%20on%20forests%20and%20associated%20aquatic%20ecosystems%2C%20recent%20declines%20in%20atmospheric%20N%20deposition%20and%20unexplained%20declines%20in%20N%20export%20from%20these%20ecosystems%20have%20raised%20new%20concerns%20about%20N%20oligotrophication%2C%20limitations%20of%20forest%20productivity%2C%20and%20the%20capacity%20for%20forests%20to%20respond%20dynamically%20to%20disturbance%20and%20environmental%20change.%20Here%20we%20show%20multiple%20data%20streams%20from%20long-term%20ecological%20research%20at%20the%20Hubbard%20Brook%20Experimental%20Forest%20in%20New%20Hampshire%2C%20USA%20suggesting%20that%20N%20oligotrophication%20in%20forest%20soils%20is%20driven%20by%20increased%20carbon%20flow%20from%20the%20atmosphere%20through%20soils%20that%20stimulates%20microbial%20immobilization%20of%20N%20and%20decreases%20available%20N%20for%20plants.%20Decreased%20available%20N%20in%20soils%20can%20result%20in%20increased%20N%20resorption%20by%20trees%2C%20which%20reduces%20litterfall%20N%20input%20to%20soils%2C%20further%20limiting%20available%20N%20supply%20and%20leading%20to%20further%20declines%20in%20soil%20N%20availability.%20Moreover%2C%20N%20oligotrophication%20has%20been%20likely%20exacerbated%20by%20changes%20in%20climate%20that%20increase%20the%20length%20of%20the%20growing%20season%20and%20decrease%20production%20of%20available%20N%20by%20mineralization%20during%20both%20winter%20and%20spring.%20These%20results%20suggest%20a%20need%20to%20re-evaluate%20the%20nature%20and%20extent%20of%20N%20cycling%20in%20temperate%20forests%20and%20assess%20how%20changing%20conditions%20will%20influence%20forest%20ecosystem%20response%20to%20multiple%2C%20dynamic%20stresses%20of%20global%20environmental%20change.%22%2C%22date%22%3A%222018%5C%2F05%5C%2F12%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs10533-018-0445-y%22%2C%22ISSN%22%3A%220168-2563%2C%201573-515X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2Farticle%5C%2F10.1007%5C%2Fs10533-018-0445-y%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%224HQ996IE%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dur%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222017-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDur%26%23xE1%3Bn%2C%20J.%2C%20Morse%2C%20J.%20L.%2C%20Rodr%26%23xED%3Bguez%2C%20A.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Driscoll%2C%20C.%20T.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Mitchell%2C%20M.%20J.%2C%20Templer%2C%20P.%20H.%2C%20%26amp%3B%20Groffman%2C%20P.%20M.%20%282017%29.%20Differential%20sensitivity%20to%20climate%20change%20of%20C%20and%20N%20cycling%20processes%20across%20soil%20horizons%20in%20a%20northern%20hardwood%20forest.%20%3Ci%3ESoil%20Biology%20and%20Biochemistry%3C%5C%2Fi%3E%2C%20%3Ci%3E107%3C%5C%2Fi%3E%2C%2077%26%23x2013%3B84.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.soilbio.2016.12.028%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.soilbio.2016.12.028%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Differential%20sensitivity%20to%20climate%20change%20of%20C%20and%20N%20cycling%20processes%20across%20soil%20horizons%20in%20a%20northern%20hardwood%20forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Dur%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alexandra%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%5D%2C%22abstractNote%22%3A%22Climate%20of%20the%20northern%20hardwood%20forests%20of%20North%20America%20will%20become%20significantly%20warmer%20in%20the%20coming%20decades.%20Associated%20increases%20in%20soil%20temperature%2C%20decreases%20in%20water%20availability%20and%20changes%20in%20winter%20snow%20pack%20and%20soil%20frost%20are%20likely%20to%20affect%20soil%20carbon%20%28C%29%20and%20nitrogen%20%28N%29%20cycling.%20Most%20studies%20of%20the%20effects%20of%20climate%20change%20on%20soil%20function%20have%20focused%20on%20the%20upper-organic%20part%20of%20the%20soil%20profile%20%28e.g.%2C%20forest%20floor%29%2C%20and%20little%20is%20known%20about%20effects%20on%20deeper%20mineral%20soil%20horizons.%20We%20exploited%20an%20elevation%5C%2Forientation%20gradient%20at%20the%20Hubbard%20Brook%20Experimental%20Forest%20%28New%20Hampshire%2C%20USA%29%20to%20evaluate%20how%20variation%20in%20climate%2C%20similar%20to%20that%20projected%20to%20occur%20over%20the%20next%2050%5Cu2013100%20years%2C%20affects%20soil%20C%20and%20N%20pools%20and%20transformation%20rates%20in%20different%20soil%20horizons%20of%20northern%20hardwood%20forests.%20Lower%20elevation%2C%20south-facing%20plots%20with%20higher%20soil%20temperature%2C%20less%20soil%20moisture%20and%20snow%2C%20and%20increased%20frequency%20of%20soil%20freeze%5C%2Fthaw%20events%20had%20less%20soil%20inorganic%20N%20content%20and%20lower%20potential%20net%20N%20mineralization%20rates%20compared%20to%20higher%20elevation%2C%20north%20facing%20plots.%20These%20differences%20in%20N%20pools%20and%20fluxes%20were%20consistent%20for%20all%20soil%20horizons%2C%20but%20sensitivity%20to%20climate%20variation%20increased%20with%20soil%20depth%2C%20confirming%20that%20assessments%20of%20climate%20change%20effects%20that%20do%20not%20consider%20variation%20throughout%20the%20soil%20profile%20are%20likely%20to%20be%20incomplete%20and%20potentially%20inaccurate.%20Nitrogen%20cycling%20processes%20were%20more%20sensitive%20to%20climate%20variation%20than%20C%20cycling%20processes%2C%20suggesting%20a%20decoupling%20of%20C%20and%20N%20cycles%20in%20coming%20decades%2C%20with%20important%20implications%20for%20ecosystem%20function.%20Soil%20processes%20showed%20greater%20sensitivity%20to%20climate%20variation%20in%20summer%20than%20in%20spring%2C%20and%20in%20the%20warmer%20and%20less%20snowy%20year%20of%20sampling%2C%20suggesting%20that%20the%20effects%20of%20climate%20change%20might%20become%20more%20pronounced%20as%20temperatures%20increase%20and%20snow%20fall%20and%20water%20availability%20decrease%20in%20the%20coming%20decades.%22%2C%22date%22%3A%22April%202017%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.soilbio.2016.12.028%22%2C%22ISSN%22%3A%220038-0717%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.sciencedirect.com%5C%2Fscience%5C%2Farticle%5C%2Fpii%5C%2FS0038071716308410%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22DK9RXYSY%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Christenson%20et%20al.%22%2C%22parsedDate%22%3A%222017-03-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChristenson%2C%20L.%2C%20Clark%2C%20H.%2C%20Livingston%2C%20L.%2C%20Heffernan%2C%20E.%2C%20Campbell%2C%20J.%2C%20Driscoll%2C%20C.%2C%20Groffman%2C%20P.%2C%20Fahey%2C%20T.%2C%20Fisk%2C%20M.%2C%20Mitchell%2C%20M.%2C%20%26amp%3B%20Templer%2C%20P.%20H.%20%282017%29.%20Winter%20Climate%20Change%20Influences%20on%20Soil%20Faunal%20Distribution%20and%20Abundance%3A%20Implications%20for%20Decomposition%20in%20the%20Northern%20Forest.%20%3Ci%3ENortheastern%20Naturalist%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%28sp7%29%2C%20B209%26%23x2013%3BB234.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1656%5C%2F045.024.s721%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1656%5C%2F045.024.s721%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20Climate%20Change%20Influences%20on%20Soil%20Faunal%20Distribution%20and%20Abundance%3A%20Implications%20for%20Decomposition%20in%20the%20Northern%20Forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannah%22%2C%22lastName%22%3A%22Clark%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%22%2C%22lastName%22%3A%22Livingston%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elise%22%2C%22lastName%22%3A%22Heffernan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%5D%2C%22abstractNote%22%3A%22Winter%20is%20typically%20considered%20a%20dormant%20period%20in%20northern%20forests%2C%20but%20important%20ecological%20processes%20continue%20during%20this%20season%20in%20these%20ecosystems.%20At%20the%20Hubbard%20Brook%20Experimental%20Forest%2C%20located%20in%20the%20White%20Mountains%20of%20New%20Hampshire%2C%20we%20used%20an%20elevational%20climate%20gradient%20to%20investigate%20how%20changes%20in%20winter%20climate%20affect%20the%20litter%20and%20soil%20invertebrate%20community%20and%20related%20decomposition%20rates%20of%20Acer%20saccharum%20%28Sugar%20Maple%29%20litter%20over%20a%202-year%20period.%20The%20overall%20abundance%20and%20richness%20of%20litter%20invertebrates%20declined%20with%20increasing%20elevation%2C%20while%20the%20diversity%20and%20abundance%20of%20soil%20invertebrates%20was%20similar%20across%20the%20gradient.%20Snow%20depth%20and%20soil%20temperature%20were%20correlated%20to%20the%20abundance%20and%20distribution%20of%20the%20litter%20invertebrate%20community%2C%20whereas%20soil%20organic%20matter%2C%20soil%20moisture%2C%20and%20soil%20frost%20were%20correlated%20with%20the%20distribution%20and%20abundance%20of%20the%20soil%20invertebrate%20community.%20Decomposition%20rates%20were%20initially%20faster%20at%20lower-elevation%20sites%20following%201%20year%20of%20decomposition%2C%20then%20stabilized%20at%20the%20end%20of%202%20years%20with%20no%20difference%20between%20higher-%20and%20lower-elevation%20sites.%20This%20pattern%20may%20be%20explained%20by%20the%20distribution%20and%20abundance%20of%20the%20litter%20and%20soil%20invertebrates.%20Higher%20abundances%20of%20litter%20invertebrates%2C%20especially%20Collembola%2C%20at%20lower-elevation%20sites%20contribute%20to%20faster%20initial%20breakdown%20of%20litter%2C%20while%20greater%20abundances%20of%20Acari%20in%20soils%20at%20higher%20elevation%20contribute%20to%20the%20later%20stages%20of%20decay.%20The%20interaction%20between%20decomposition%20and%20the%20associated%20invertebrate%20community%20responded%20to%20changes%20in%20climatic%20conditions%2C%20with%20both%20soil%20temperature%20and%20soil%20moisture%20being%20important%20determinants.%22%2C%22date%22%3A%22March%201%2C%202017%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1656%5C%2F045.024.s721%22%2C%22ISSN%22%3A%221092-6194%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.bioone.org%5C%2Fdoi%5C%2Ffull%5C%2F10.1656%5C%2F045.024.s721%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22XYQU5RQI%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Sorensen%20et%20al.%22%2C%22parsedDate%22%3A%222016-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ESorensen%2C%20P.%20O.%2C%20Templer%2C%20P.%20H.%2C%20Christenson%2C%20L.%2C%20Duran%2C%20J.%2C%20Fahey%2C%20T.%2C%20Fisk%2C%20M.%20C.%2C%20Groffman%2C%20P.%20M.%2C%20Morse%2C%20J.%20L.%2C%20%26amp%3B%20Finzi%2C%20A.%20C.%20%282016%29.%20Reduced%20snow%20cover%20alters%20root-microbe%20interactions%20and%20decreases%20nitrification%20rates%20in%20a%20northern%20hardwood%20forest.%20%3Ci%3EEcology%3C%5C%2Fi%3E%2C%20%3Ci%3E97%3C%5C%2Fi%3E%2812%29%2C%203359%26%23x2013%3B3368.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fecy.1599%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fecy.1599%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Reduced%20snow%20cover%20alters%20root-microbe%20interactions%20and%20decreases%20nitrification%20rates%20in%20a%20northern%20hardwood%20forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20O.%22%2C%22lastName%22%3A%22Sorensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Duran%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adrien%20C.%22%2C%22lastName%22%3A%22Finzi%22%7D%5D%2C%22abstractNote%22%3A%22Snow%20cover%20is%20projected%20to%20decline%20during%20the%20next%20century%20in%20many%20ecosystems%20that%20currently%20experience%20a%20seasonal%20snowpack.%20Because%20snow%20insulates%20soils%20from%20frigid%20winter%20air%20temperatures%2C%20soils%20are%20expected%20to%20become%20colder%20and%20experience%20more%20winter%20soil%20freeze-thaw%20cycles%20as%20snow%20cover%20continues%20to%20decline.%20Tree%20roots%20are%20adversely%20affected%20by%20snowpack%20reduction%2C%20but%20whether%20loss%20of%20snow%20will%20affect%20root-microbe%20interactions%20remains%20largely%20unknown.%20The%20objective%20of%20this%20study%20was%20to%20distinguish%20and%20attribute%20direct%20%28e.g.%2C%20winter%20snow-%20and%5C%2For%20soil%20frost-mediated%29%20vs.%20indirect%20%28e.g.%2C%20root-mediated%29%20effects%20of%20winter%20climate%20change%20on%20microbial%20biomass%2C%20the%20potential%20activity%20of%20microbial%20exoenzymes%2C%20and%20net%20N%20mineralization%20and%20nitrification%20rates.%20Soil%20cores%20were%20incubated%20in%20situ%20in%20nylon%20mesh%20that%20either%20allowed%20roots%20to%20grow%20into%20the%20soil%20core%20%282%5Cu00a0mm%20pore%20size%29%20or%20excluded%20root%20ingrowth%20%2850%5Cu00a0%5Cu03bcm%20pore%20size%29%20for%20up%20to%2029%5Cu00a0months%20along%20a%20natural%20winter%20climate%20gradient%20at%20Hubbard%20Brook%20Experimental%20Forest%2C%20NH%20%28USA%29.%20Microbial%20biomass%20did%20not%20differ%20among%20ingrowth%20or%20exclusion%20cores.%20Across%20sampling%20dates%2C%20the%20potential%20activities%20of%20cellobiohydrolase%2C%20phenol%20oxidase%2C%20and%20peroxidase%2C%20and%20net%20N%20mineralization%20rates%20were%20more%20strongly%20related%20to%20soil%20volumetric%20water%20content%20%28P%5Cu00a0%3C%5Cu00a00.05%3B%20R2%5Cu00a0%3D%5Cu00a00.25%5Cu20130.46%29%20than%20to%20root%20biomass%2C%20snow%20or%20soil%20frost%2C%20or%20winter%20soil%20temperature%20%28R2%5Cu00a0%3C%5Cu00a00.10%29.%20Root%20ingrowth%20was%20positively%20related%20to%20soil%20frost%20%28P%5Cu00a0%3C%5Cu00a00.01%3B%20R2%5Cu00a0%3D%5Cu00a00.28%29%2C%20suggesting%20that%20trees%20compensate%20for%20overwinter%20root%20mortality%20caused%20by%20soil%20freezing%20by%20re-allocating%20resources%20towards%20root%20production.%20At%20the%20sites%20with%20the%20deepest%20snow%20cover%2C%20root%20ingrowth%20reduced%20nitrification%20rates%20by%2030%25%20%28P%5Cu00a0%3C%5Cu00a00.01%29%2C%20showing%20that%20tree%20roots%20exert%20significant%20influence%20over%20nitrification%2C%20which%20declines%20with%20reduced%20snow%20cover.%20If%20soil%20freezing%20intensifies%20over%20time%2C%20then%20greater%20compensatory%20root%20growth%20may%20reduce%20nitrification%20rates%20directly%20via%20plant-microbe%20N%20competition%20and%20indirectly%20through%20a%20negative%20feedback%20on%20soil%20moisture%2C%20resulting%20in%20lower%20N%20availability%20to%20trees%20in%20northern%20hardwood%20forests.%22%2C%22date%22%3A%22December%201%2C%202016%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fecy.1599%22%2C%22ISSN%22%3A%221939-9170%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fecy.1599%5C%2Fabstract%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22NIGX76KX%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dur%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222016-03-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDur%26%23xE1%3Bn%2C%20J.%2C%20Morse%2C%20J.%20L.%2C%20Groffman%2C%20P.%20M.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Driscoll%2C%20C.%20T.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Likens%2C%20G.%20E.%2C%20Melillo%2C%20J.%20M.%2C%20Mitchell%2C%20M.%20J.%2C%20Templer%2C%20P.%20H.%2C%20%26amp%3B%20Vadeboncoeur%2C%20M.%20A.%20%282016%29.%20Climate%20change%20decreases%20nitrogen%20pools%20and%20mineralization%20rates%20in%20northern%20hardwood%20forests.%20%3Ci%3EEcosphere%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%283%29%2C%20n%5C%2Fa-n%5C%2Fa.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fecs2.1251%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fecs2.1251%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Climate%20change%20decreases%20nitrogen%20pools%20and%20mineralization%20rates%20in%20northern%20hardwood%20forests%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Dur%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gene%20E.%22%2C%22lastName%22%3A%22Likens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerry%20M.%22%2C%22lastName%22%3A%22Melillo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20A.%22%2C%22lastName%22%3A%22Vadeboncoeur%22%7D%5D%2C%22abstractNote%22%3A%22Nitrogen%20%28N%29%20supply%20often%20limits%20the%20productivity%20of%20temperate%20forests%20and%20is%20regulated%20by%20a%20complex%20mix%20of%20biological%20and%20climatic%20drivers.%20In%20excess%2C%20N%20is%20linked%20to%20a%20variety%20of%20soil%2C%20water%2C%20and%20air%20pollution%20issues.%20Here%2C%20we%20use%20results%20from%20an%20elevation%20gradient%20study%20and%20historical%20data%20from%20the%20long-term%20Hubbard%20Brook%20Ecosystem%20Study%20%28New%20Hampshire%2C%20USA%29%20to%20examine%20relationships%20between%20changes%20in%20climate%2C%20especially%20during%20winter%2C%20and%20N%20supply%20to%20northern%20hardwood%20forest%20ecosystems.%20Low%20elevation%20plots%20with%20less%20snow%2C%20more%20soil%20freezing%2C%20and%20more%20freeze%5C%2Fthaw%20cycles%20supported%20lower%20rates%20of%20N%20mineralization%20than%20high%20elevation%20plots%2C%20despite%20having%20higher%20soil%20temperatures%20and%20no%20consistent%20differences%20in%20soil%20moisture%20during%20the%20growing%20season.%20These%20results%20are%20consistent%20with%20historical%20analyses%20showing%20decreases%20in%20rates%20of%20soil%20N%20mineralization%20and%20inorganic%20N%20concentrations%20since%201973%20that%20are%20correlated%20with%20long-term%20increases%20in%20mean%20annual%20temperature%2C%20decreases%20in%20annual%20snow%20accumulation%2C%20and%20a%20increases%20in%20the%20number%20of%20winter%20thawing%20degree%20days.%20This%20evidence%20suggests%20that%20changing%20climate%20may%20be%20driving%20decreases%20in%20the%20availability%20of%20a%20key%20nutrient%20in%20northern%20hardwood%20forests%2C%20which%20could%20decrease%20ecosystem%20production%20but%20have%20positive%20effects%20on%20environmental%20consequences%20of%20excess%20N.%22%2C%22date%22%3A%22March%201%2C%202016%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1002%5C%2Fecs2.1251%22%2C%22ISSN%22%3A%222150-8925%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1002%5C%2Fecs2.1251%5C%2Fabstract%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22XNQEY2VJ%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fuss%20et%20al.%22%2C%22parsedDate%22%3A%222016%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFuss%2C%20C.%20B.%2C%20Driscoll%2C%20C.%20T.%2C%20Groffman%2C%20P.%20M.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Mitchell%2C%20M.%20J.%2C%20Templer%2C%20P.%20H.%2C%20Dur%26%23xE1%3Bn%2C%20J.%2C%20%26amp%3B%20Morse%2C%20J.%20L.%20%282016%29.%20Nitrate%20and%20dissolved%20organic%20carbon%20mobilization%20in%20response%20to%20soil%20freezing%20variability.%20%3Ci%3EBiogeochemistry%3C%5C%2Fi%3E%2C%20%3Ci%3E131%3C%5C%2Fi%3E%281%26%23x2013%3B2%29%2C%2035%26%23x2013%3B47.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10533-016-0262-0%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10533-016-0262-0%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Nitrate%20and%20dissolved%20organic%20carbon%20mobilization%20in%20response%20to%20soil%20freezing%20variability%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Colin%20B.%22%2C%22lastName%22%3A%22Fuss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Dur%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2212%5C%2F2016%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs10533-016-0262-0%22%2C%22ISSN%22%3A%220168-2563%2C%201573-515X%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs10533-016-0262-0%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22JL5BQVC3%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Christenson%20et%20al.%22%2C%22parsedDate%22%3A%222014-04-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChristenson%2C%20L.%20M.%2C%20Mitchell%2C%20M.%20J.%2C%20Groffman%2C%20P.%20M.%2C%20%26amp%3B%20Lovett%2C%20G.%20M.%20%282014%29.%20Cascading%20Effects%20of%20Climate%20Change%20on%20Forest%20Ecosystems%3A%20Biogeochemical%20Links%20Between%20Trees%20and%20Moose%20in%20the%20Northeast%20USA.%20%3Ci%3EEcosystems%3C%5C%2Fi%3E%2C%20%3Ci%3E17%3C%5C%2Fi%3E%283%29%2C%20442%26%23x2013%3B457.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10021-013-9733-5%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10021-013-9733-5%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Cascading%20Effects%20of%20Climate%20Change%20on%20Forest%20Ecosystems%3A%20Biogeochemical%20Links%20Between%20Trees%20and%20Moose%20in%20the%20Northeast%20USA%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20M.%22%2C%22lastName%22%3A%22Lovett%22%7D%5D%2C%22abstractNote%22%3A%22The%20relationship%20between%20herbivores%2C%20plants%20and%20nutrient%20dynamics%2C%20has%20been%20investigated%20in%20many%20systems%3B%20however%2C%20how%20these%20relationships%20are%20influenced%20by%20changing%20climate%20has%20had%20much%20less%20attention.%20In%20the%20northeastern%20USA%2C%20both%20moose%20populations%20and%20winter%20climate%20have%20been%20changing.%20Moose%2C%20once%20extirpated%20from%20the%20region%2C%20have%20made%20a%20comeback%3B%20while%20locally%2C%20snow%20depth%20and%20duration%20of%20snow%20cover%20have%20declined.%20There%20is%20considerable%20uncertainty%20in%20how%20these%20changes%20will%20interact%20to%20influence%20forested%20systems.%20We%20used%20small%20experimental%20plots%20and%20transects%20along%20with%20snow%20removal%20%28to%20elicit%20soil%20freezing%20and%20expose%20potential%20forage%20plants%29%2C%20mechanical%20browsing%2C%20and%20fecal%20additions%20%28labeled%20with%2015N%29%20to%20examine%20ecosystem%20responses.%20We%20found%20that%20snow%20removal%20changed%20moose%20browsing%20behavior%2C%20with%20balsam%20fir%20more%20heavily%20browsed%20than%20sugar%20maple%20or%20Viburnum%20under%20low%20snow%20conditions.%20Soil%20freezing%20alone%20did%20not%20significantly%20alter%20N%20dynamics%20or%20selected%20plant%20responses%2C%20but%20there%20were%20significant%20interactions%20with%20moose%20activity.%20The%20combined%20effects%20of%20moose%20fecal%20additions%2C%20mechanical%20browsing%2C%20and%20soil%20freezing%20resulted%20in%20higher%20levels%20of%20NO3%20%5Cu2212%20leaching%20under%20fir%20and%20maple%2C%20whereas%20Viburnum%20had%20essentially%20no%20response%20to%20these%20multiple%20factors.%20Our%20results%20suggest%20that%20declines%20in%20snow%20depth%20can%20initiate%20a%20cascade%20of%20ecosystem%20responses%2C%20beginning%20with%20exposure%20of%20plants%20to%20increased%20browsing%20that%20then%20triggers%20a%20series%20of%20responses%20that%20can%20lead%20to%20higher%20N%20losses%2C%20precipitated%20by%20decreased%20N%20demand%20in%20plants%20compromised%20by%20soil%20freezing%20damage.%20Balsam%20fir%20may%20be%20particularly%20susceptible%20to%20this%20cascade%20of%20multiple%20stresses.%22%2C%22date%22%3A%222014%5C%2F04%5C%2F01%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs10021-013-9733-5%22%2C%22ISSN%22%3A%221432-9840%2C%201435-0629%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Flink.springer.com%5C%2Farticle%5C%2F10.1007%5C%2Fs10021-013-9733-5%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22RS9KXXAB%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dur%5Cu00e1n%20et%20al.%22%2C%22parsedDate%22%3A%222014%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDur%26%23xE1%3Bn%2C%20J.%2C%20Morse%2C%20J.%20L.%2C%20Groffman%2C%20P.%20M.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Driscoll%2C%20C.%20T.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Mitchell%2C%20M.%20J.%2C%20%26amp%3B%20Templer%2C%20P.%20H.%20%282014%29.%20Winter%20climate%20change%20affects%20growing-season%20soil%20microbial%20biomass%20and%20activity%20in%20northern%20hardwood%20forests.%20%3Ci%3EGlobal%20Change%20Biology%3C%5C%2Fi%3E%2C%20%3Ci%3E20%3C%5C%2Fi%3E%2811%29%2C%203568%26%23x2013%3B3577.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fgcb.12624%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1111%5C%2Fgcb.12624%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20climate%20change%20affects%20growing-season%20soil%20microbial%20biomass%20and%20activity%20in%20northern%20hardwood%20forests%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jorge%22%2C%22lastName%22%3A%22Dur%5Cu00e1n%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%5D%2C%22abstractNote%22%3A%22Understanding%20the%20responses%20of%20terrestrial%20ecosystems%20to%20global%20change%20remains%20a%20major%20challenge%20of%20ecological%20research.%20We%20exploited%20a%20natural%20elevation%20gradient%20in%20a%20northern%20hardwood%20forest%20to%20determine%20how%20reductions%20in%20snow%20accumulation%2C%20expected%20with%20climate%20change%2C%20directly%20affect%20dynamics%20of%20soil%20winter%20frost%2C%20and%20indirectly%20soil%20microbial%20biomass%20and%20activity%20during%20the%20growing%20season.%20Soils%20from%20lower%20elevation%20plots%2C%20which%20accumulated%20less%20snow%20and%20experienced%20more%20soil%20temperature%20variability%20during%20the%20winter%20%28and%20likely%20more%20freeze%5C%2Fthaw%20events%29%2C%20had%20less%20extractable%20inorganic%20nitrogen%20%28N%29%2C%20lower%20rates%20of%20microbial%20N%20production%20via%20potential%20net%20N%20mineralization%20and%20nitrification%2C%20and%20higher%20potential%20microbial%20respiration%20during%20the%20growing%20season.%20Potential%20nitrate%20production%20rates%20during%20the%20growing%20season%20were%20particularly%20sensitive%20to%20changes%20in%20winter%20snow%20pack%20accumulation%20and%20winter%20soil%20temperature%20variability%2C%20especially%20in%20spring.%20Effects%20of%20elevation%20and%20winter%20conditions%20on%20N%20transformation%20rates%20differed%20from%20those%20on%20potential%20microbial%20respiration%2C%20suggesting%20that%20N-related%20processes%20might%20respond%20differently%20to%20winter%20climate%20change%20in%20northern%20hardwood%20forests%20than%20C-related%20processes.%22%2C%22date%22%3A%222014%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1111%5C%2Fgcb.12624%22%2C%22ISSN%22%3A%221365-2486%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fonlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1111%5C%2Fgcb.12624%5C%2Fabstract%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22I4ZTN3IJ%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Groffman%20et%20al.%22%2C%22parsedDate%22%3A%222012-12-01%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGroffman%2C%20P.%20M.%2C%20Rustad%2C%20L.%20E.%2C%20Templer%2C%20P.%20H.%2C%20Campbell%2C%20J.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Lany%2C%20N.%20K.%2C%20Socci%2C%20A.%20M.%2C%20Vadeboncoeur%2C%20M.%20A.%2C%20Schaberg%2C%20P.%20G.%2C%20Wilson%2C%20G.%20F.%2C%20Driscoll%2C%20C.%20T.%2C%20Fahey%2C%20T.%20J.%2C%20Fisk%2C%20M.%20C.%2C%20Goodale%2C%20C.%20L.%2C%20Green%2C%20M.%20B.%2C%20Hamburg%2C%20S.%20P.%2C%20Johnson%2C%20C.%20E.%2C%20Mitchell%2C%20M.%20J.%2C%20Morse%2C%20J.%20L.%2C%20%26%23x2026%3B%20Rodenhouse%2C%20N.%20L.%20%282012%29.%20Long-Term%20Integrated%20Studies%20Show%20Complex%20and%20Surprising%20Effects%20of%20Climate%20Change%20in%20the%20Northern%20Hardwood%20Forest.%20%3Ci%3EBioScience%3C%5C%2Fi%3E%2C%20%3Ci%3E62%3C%5C%2Fi%3E%2812%29%2C%201056%26%23x2013%3B1066.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1525%5C%2Fbio.2012.62.12.7%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1525%5C%2Fbio.2012.62.12.7%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Long-Term%20Integrated%20Studies%20Show%20Complex%20and%20Surprising%20Effects%20of%20Climate%20Change%20in%20the%20Northern%20Hardwood%20Forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%20E.%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lynn%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nina%20K.%22%2C%22lastName%22%3A%22Lany%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anne%20M.%22%2C%22lastName%22%3A%22Socci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%20A.%22%2C%22lastName%22%3A%22Vadeboncoeur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20G.%22%2C%22lastName%22%3A%22Schaberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Geoffrey%20F.%22%2C%22lastName%22%3A%22Wilson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Melany%20C.%22%2C%22lastName%22%3A%22Fisk%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christine%20L.%22%2C%22lastName%22%3A%22Goodale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20B.%22%2C%22lastName%22%3A%22Green%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20P.%22%2C%22lastName%22%3A%22Hamburg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chris%20E.%22%2C%22lastName%22%3A%22Johnson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Myron%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20L.%22%2C%22lastName%22%3A%22Morse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Linda%20H.%22%2C%22lastName%22%3A%22Pardo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%20L.%22%2C%22lastName%22%3A%22Rodenhouse%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%22December%201%2C%202012%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1525%5C%2Fbio.2012.62.12.7%22%2C%22ISSN%22%3A%220006-3568%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fwww.bioone.org%5C%2Fdoi%5C%2Fabs%5C%2F10.1525%5C%2Fbio.2012.62.12.7%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A51%3A59Z%22%7D%7D%2C%7B%22key%22%3A%22NINEFXRC%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Christenson%20et%20al.%22%2C%22parsedDate%22%3A%222010%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChristenson%2C%20L.%20M.%2C%20Mitchell%2C%20M.%20J.%2C%20Groffman%2C%20P.%20M.%2C%20%26amp%3B%20Lovett%2C%20G.%20M.%20%282010%29.%20Winter%20climate%20change%20implications%20for%20decomposition%20in%20Northeastern%20forests%3A%20Comparisons%20of%20sugar%20maple%20litter%20to%20herbivore%20fecal%20inputs.%20%3Ci%3EGlobal%20Change%20Biology%3C%5C%2Fi%3E%2C%20%3Ci%3EDOI%3A%2010.1111%5C%2Fj.1365-2486.2009.02115.x%3C%5C%2Fi%3E.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20climate%20change%20implications%20for%20decomposition%20in%20Northeastern%20forests%3A%20Comparisons%20of%20sugar%20maple%20litter%20to%20herbivore%20fecal%20inputs%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20M.%22%2C%22lastName%22%3A%22Lovett%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222010%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22Z8QGKVYQ%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rodenhouse%20et%20al.%22%2C%22parsedDate%22%3A%222009%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERodenhouse%2C%20N.%20L.%2C%20Christenson%2C%20L.%20M.%2C%20Parry%2C%20D.%2C%20%26amp%3B%20Green%2C%20L.%20E.%20%282009%29.%20Climate%20change%20effects%20on%20native%20fauna%20of%20northeastern%20forests.%20%3Ci%3ECanadian%20Journal%20of%20Forestry%3C%5C%2Fi%3E%2C%20%3Ci%3E39%3C%5C%2Fi%3E%2C%20249%26%23x2013%3B263.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1139%5C%2FX08-160%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1139%5C%2FX08-160%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Climate%20change%20effects%20on%20native%20fauna%20of%20northeastern%20forests%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22N.%20L.%22%2C%22lastName%22%3A%22Rodenhouse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Parry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20E.%22%2C%22lastName%22%3A%22Green%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222009%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1139%5C%2FX08-160%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T18%3A15%3A23Z%22%7D%7D%2C%7B%22key%22%3A%223GRWNUE9%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Campbell%20et%20al.%22%2C%22parsedDate%22%3A%222007%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECampbell%2C%20J.%20L.%2C%20Mitchell%2C%20M.%20J.%2C%20Mayer%2C%20B.%2C%20Groffman%2C%20P.%20M.%2C%20%26amp%3B%20Christenson%2C%20L.%20M.%20%282007%29.%20Mobility%20of%20nitrogen-15-labeled%20nitrate%20and%20sulfur-34%20labeled%20sulfate%20during%20snowmelt.%20%3Ci%3ESoil%20Sci.%20Soc.%20Am.%20J.%3C%5C%2Fi%3E%2C%20%3Ci%3E71%3C%5C%2Fi%3E%2C%201934%26%23x2013%3B1944.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Mobility%20of%20nitrogen-15-labeled%20nitrate%20and%20sulfur-34%20labeled%20sulfate%20during%20snowmelt%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Mayer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222007%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%2C%7B%22key%22%3A%223X4S6SXX%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Christenson%22%2C%22parsedDate%22%3A%222007%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChristenson%2C%20L.%20M.%20%282007%29.%20%3Ci%3EThe%20biogeochemistry%20of%20moose%20and%20soil%20freezing%3A%20Multiple%20interactions%20influence%20on%20nitrogen%20cycling%20in%20a%20northern%20hardwood%20forest%3C%5C%2Fi%3E%20%28HBR.07-35%29%20%5BPhD%20Thesis%5D.%20SUNY%20College%20of%20Environmental%20Science%20and%20Forestry.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22thesis%22%2C%22title%22%3A%22The%20biogeochemistry%20of%20moose%20and%20soil%20freezing%3A%20Multiple%20interactions%20influence%20on%20nitrogen%20cycling%20in%20a%20northern%20hardwood%20forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22thesisType%22%3A%22PhD%20Thesis%22%2C%22university%22%3A%22SUNY%20College%20of%20Environmental%20Science%20and%20Forestry%22%2C%22date%22%3A%222007%22%2C%22language%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T17%3A58%3A08Z%22%7D%7D%2C%7B%22key%22%3A%22S6GD2FNB%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Campbell%20et%20al.%22%2C%22parsedDate%22%3A%222005%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECampbell%2C%20J.%20L.%2C%20Mitchell%2C%20M.%20J.%2C%20Groffman%2C%20P.%20M.%2C%20Christenson%2C%20L.%20M.%2C%20%26amp%3B%20Hardy%2C%20J.%20P.%20%282005%29.%20Winter%20in%20northeastern%20North%20America%3A%20A%20critical%20period%20for%20ecological%20processes.%20%3Ci%3EFrontiers%20in%20Ecology%3C%5C%2Fi%3E%2C%20%3Ci%3E3%3C%5C%2Fi%3E%286%29%2C%20314%26%23x2013%3B322.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Winter%20in%20northeastern%20North%20America%3A%20A%20critical%20period%20for%20ecological%20processes%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20J.%22%2C%22lastName%22%3A%22Mitchell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20M.%22%2C%22lastName%22%3A%22Christenson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20P.%22%2C%22lastName%22%3A%22Hardy%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222005%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A09%3A40Z%22%7D%7D%5D%7D
Groffman, P. M., Driscoll, C. T., Durán, J., Campbell, J. L., Christenson, L. M., Fahey, T. J., Fisk, M. C., Fuss, C., Likens, G. E., Lovett, G., Rustad, L., & Templer, P. H. (2018). Nitrogen oligotrophication in northern hardwood forests. Biogeochemistry, 1–17. https://doi.org/10.1007/s10533-018-0445-y
Durán, J., Morse, J. L., Rodríguez, A., Campbell, J. L., Christenson, L. M., Driscoll, C. T., Fahey, T. J., Fisk, M. C., Mitchell, M. J., Templer, P. H., & Groffman, P. M. (2017). Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. Soil Biology and Biochemistry, 107, 77–84. https://doi.org/10.1016/j.soilbio.2016.12.028
Christenson, L., Clark, H., Livingston, L., Heffernan, E., Campbell, J., Driscoll, C., Groffman, P., Fahey, T., Fisk, M., Mitchell, M., & Templer, P. H. (2017). Winter Climate Change Influences on Soil Faunal Distribution and Abundance: Implications for Decomposition in the Northern Forest. Northeastern Naturalist, 24(sp7), B209–B234. https://doi.org/10.1656/045.024.s721
Sorensen, P. O., Templer, P. H., Christenson, L., Duran, J., Fahey, T., Fisk, M. C., Groffman, P. M., Morse, J. L., & Finzi, A. C. (2016). Reduced snow cover alters root-microbe interactions and decreases nitrification rates in a northern hardwood forest. Ecology, 97(12), 3359–3368. https://doi.org/10.1002/ecy.1599
Durán, J., Morse, J. L., Groffman, P. M., Campbell, J. L., Christenson, L. M., Driscoll, C. T., Fahey, T. J., Fisk, M. C., Likens, G. E., Melillo, J. M., Mitchell, M. J., Templer, P. H., & Vadeboncoeur, M. A. (2016). Climate change decreases nitrogen pools and mineralization rates in northern hardwood forests. Ecosphere, 7(3), n/a-n/a. https://doi.org/10.1002/ecs2.1251
Fuss, C. B., Driscoll, C. T., Groffman, P. M., Campbell, J. L., Christenson, L. M., Fahey, T. J., Fisk, M. C., Mitchell, M. J., Templer, P. H., Durán, J., & Morse, J. L. (2016). Nitrate and dissolved organic carbon mobilization in response to soil freezing variability. Biogeochemistry, 131(1–2), 35–47. https://doi.org/10.1007/s10533-016-0262-0
Christenson, L. M., Mitchell, M. J., Groffman, P. M., & Lovett, G. M. (2014). Cascading Effects of Climate Change on Forest Ecosystems: Biogeochemical Links Between Trees and Moose in the Northeast USA. Ecosystems, 17(3), 442–457. https://doi.org/10.1007/s10021-013-9733-5
Durán, J., Morse, J. L., Groffman, P. M., Campbell, J. L., Christenson, L. M., Driscoll, C. T., Fahey, T. J., Fisk, M. C., Mitchell, M. J., & Templer, P. H. (2014). Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests. Global Change Biology, 20(11), 3568–3577. https://doi.org/10.1111/gcb.12624
Groffman, P. M., Rustad, L. E., Templer, P. H., Campbell, J. L., Christenson, L. M., Lany, N. K., Socci, A. M., Vadeboncoeur, M. A., Schaberg, P. G., Wilson, G. F., Driscoll, C. T., Fahey, T. J., Fisk, M. C., Goodale, C. L., Green, M. B., Hamburg, S. P., Johnson, C. E., Mitchell, M. J., Morse, J. L., … Rodenhouse, N. L. (2012). Long-Term Integrated Studies Show Complex and Surprising Effects of Climate Change in the Northern Hardwood Forest. BioScience, 62(12), 1056–1066. https://doi.org/10.1525/bio.2012.62.12.7
Christenson, L. M., Mitchell, M. J., Groffman, P. M., & Lovett, G. M. (2010). Winter climate change implications for decomposition in Northeastern forests: Comparisons of sugar maple litter to herbivore fecal inputs. Global Change Biology, DOI: 10.1111/j.1365-2486.2009.02115.x.
Rodenhouse, N. L., Christenson, L. M., Parry, D., & Green, L. E. (2009). Climate change effects on native fauna of northeastern forests. Canadian Journal of Forestry, 39, 249–263. https://doi.org/https://doi.org/10.1139/X08-160
Campbell, J. L., Mitchell, M. J., Mayer, B., Groffman, P. M., & Christenson, L. M. (2007). Mobility of nitrogen-15-labeled nitrate and sulfur-34 labeled sulfate during snowmelt. Soil Sci. Soc. Am. J., 71, 1934–1944.
Christenson, L. M. (2007). The biogeochemistry of moose and soil freezing: Multiple interactions influence on nitrogen cycling in a northern hardwood forest (HBR.07-35) [PhD Thesis]. SUNY College of Environmental Science and Forestry.
Campbell, J. L., Mitchell, M. J., Groffman, P. M., Christenson, L. M., & Hardy, J. P. (2005). Winter in northeastern North America: A critical period for ecological processes. Frontiers in Ecology, 3(6), 314–322.