Institution: USDA Forest Service
Department: Northern Research Station
234 Mirror Lake Road
North Woodstock, NH 03262
Department: Northern Research Station
234 Mirror Lake Road
North Woodstock, NH 03262
Hubbard Brook Role: Technical Staff, Site Manager
Hubbard Brook Publications by this Author
4549695
halm_i
1
apa
50
date
desc
460
https://hubbardbrook.org/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22RDJUIWLI%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Rustad%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERustad%2C%20L.%20E.%2C%20Campbell%2C%20J.%20L.%2C%20Driscoll%2C%20C.%20T.%2C%20Fahey%2C%20T.%20J.%2C%20Groffman%2C%20P.%20M.%2C%20Schaberg%2C%20P.%20G.%2C%20Hawley%2C%20G.%20J.%2C%20Halm%2C%20I.%2C%20Bowles%2C%20F.%2C%20Leuenberger%2C%20W.%2C%20Schwaner%2C%20G.%2C%20Winant%2C%20G.%2C%20%26amp%3B%20Leonardi%2C%20B.%20%282020%29.%20Experimental%20approach%20and%20initial%20forest%20response%20to%20a%20simulated%20ice%20storm%20experiment%20in%20a%20northern%20hardwood%20forest.%20%3Ci%3EPLOS%20ONE%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%289%29%2C%20e0239619.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0239619%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0239619%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Experimental%20approach%20and%20initial%20forest%20response%20to%20a%20simulated%20ice%20storm%20experiment%20in%20a%20northern%20hardwood%20forest%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%20E.%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20G.%22%2C%22lastName%22%3A%22Schaberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gary%20J.%22%2C%22lastName%22%3A%22Hawley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Halm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Frank%22%2C%22lastName%22%3A%22Bowles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendy%22%2C%22lastName%22%3A%22Leuenberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Geoffrey%22%2C%22lastName%22%3A%22Schwaner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gabriel%22%2C%22lastName%22%3A%22Winant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brendan%22%2C%22lastName%22%3A%22Leonardi%22%7D%5D%2C%22abstractNote%22%3A%22Ice%20storms%20are%20a%20type%20of%20extreme%20winter%20weather%20event%20common%20to%20north%20temperate%20and%20boreal%20forests%20worldwide.%20Recent%20climate%20modelling%20studies%20suggest%20that%20these%20storms%20may%20become%20more%20frequent%20and%20severe%20under%20a%20changing%20climate.%20Compared%20to%20other%20types%20of%20storm%20events%2C%20relatively%20little%20is%20known%20about%20the%20direct%20and%20indirect%20impacts%20of%20these%20storms%20on%20forests%2C%20as%20naturally%20occurring%20ice%20storms%20are%20inherently%20difficult%20to%20study.%20Here%20we%20describe%20a%20novel%20experimental%20approach%20used%20to%20create%20a%20suite%20of%20ice%20storms%20in%20a%20mature%20hardwood%20forest%20in%20New%20Hampshire%2C%20USA.%20The%20experiment%20included%20five%20ice%20storm%20intensities%20%280%2C%206.4%2C%2012.7%20and%2019.1%20mm%20radial%20ice%20accretion%29%20applied%20in%20a%20single%20year%2C%20and%20one%20ice%20storm%20intensity%20%2812.7%20mm%29%20applied%20in%20two%20consecutive%20years.%20Results%20demonstrate%20the%20feasibility%20of%20this%20approach%20for%20creating%20experimental%20ice%20storms%2C%20quantify%20the%20increase%20in%20fine%20and%20coarse%20woody%20debris%20mass%20and%20nutrients%20transferred%20from%20the%20forest%20canopy%20to%20the%20soil%20under%20the%20different%20icing%20conditions%2C%20and%20show%20an%20increase%20in%20the%20damage%20to%20the%20forest%20canopy%20with%20increasing%20icing%20that%20evolves%20over%20time.%20In%20this%20forest%2C%20little%20damage%20occurred%20below%206.4%20mm%20radial%20ice%20accretion%2C%20moderate%20damage%20occurred%20with%20up%20to%2012.7%20mm%20of%20accretion%2C%20and%20significant%20branch%20breakage%20and%20canopy%20damage%20occurred%20with%2019.1%20mm%20of%20ice.%20The%20icing%20in%20consecutive%20years%20demonstrated%20an%20interactive%20effect%20of%20ice%20storm%20frequency%20and%20severity%20such%20that%20some%20branches%20damaged%20in%20the%20first%20year%20of%20icing%20appeared%20to%20remain%20in%20the%20canopy%20and%20then%20fall%20to%20the%20ground%20in%20the%20second%20year%20of%20icing.%20These%20results%20have%20implications%20for%20National%20Weather%20Service%20ice%20storm%20warning%20levels%2C%20as%20they%20provide%20a%20quantitative%20assessment%20of%20ice-load%20related%20inputs%20of%20forest%20debris%20that%20will%20be%20useful%20to%20municipalities%20creating%20response%20plans%20for%20current%20and%20future%20ice%20storms.%22%2C%22date%22%3A%22Sep%2025%2C%202020%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1371%5C%2Fjournal.pone.0239619%22%2C%22ISSN%22%3A%221932-6203%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.plos.org%5C%2Fplosone%5C%2Farticle%3Fid%3D10.1371%5C%2Fjournal.pone.0239619%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A23%3A53Z%22%7D%7D%2C%7B%22key%22%3A%22TAJ5JMX6%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Campbell%20et%20al.%22%2C%22parsedDate%22%3A%222020-09-09%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECampbell%2C%20J.%20L.%2C%20Rustad%2C%20L.%20E.%2C%20Garlick%2C%20S.%2C%20Newman%2C%20N.%2C%20Stanovick%2C%20J.%20S.%2C%20Halm%2C%20I.%2C%20Driscoll%2C%20C.%20T.%2C%20Barjenbruch%2C%20B.%20L.%2C%20Burakowski%2C%20E.%2C%20Hilberg%2C%20S.%20D.%2C%20Sanders%2C%20K.%20J.%2C%20Shafer%2C%20J.%20C.%2C%20%26amp%3B%20Doesken%2C%20N.%20J.%20%282020%29.%20A%20Comparison%20of%20Low-Cost%20Collector%20Configurations%20for%20Quantifying%20Ice%20Accretion.%20%3Ci%3EJournal%20of%20Applied%20Meteorology%20and%20Climatology%3C%5C%2Fi%3E%2C%20%3Ci%3E59%3C%5C%2Fi%3E%289%29%2C%201429%26%23x2013%3B1442.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJAMC-D-19-0280.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FJAMC-D-19-0280.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Comparison%20of%20Low-Cost%20Collector%20Configurations%20for%20Quantifying%20Ice%20Accretion%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%20E.%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sarah%22%2C%22lastName%22%3A%22Garlick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Noah%22%2C%22lastName%22%3A%22Newman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20S.%22%2C%22lastName%22%3A%22Stanovick%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Halm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Brian%20L.%22%2C%22lastName%22%3A%22Barjenbruch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elizabeth%22%2C%22lastName%22%3A%22Burakowski%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20D.%22%2C%22lastName%22%3A%22Hilberg%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristopher%20J.%22%2C%22lastName%22%3A%22Sanders%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jason%20C.%22%2C%22lastName%22%3A%22Shafer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nolan%20J.%22%2C%22lastName%22%3A%22Doesken%22%7D%5D%2C%22abstractNote%22%3A%22%3Csection%20class%3D%5C%22abstract%5C%22%3E%3Ch2%20class%3D%5C%22abstractTitle%20text-title%20my-1%5C%22%20id%3D%5C%22d390e2%5C%22%3EAbstract%3C%5C%2Fh2%3E%3Cp%3EIce%20storms%20are%20important%20winter%20weather%20events%20that%20can%20have%20substantial%20environmental%2C%20economic%2C%20and%20social%20impacts.%20Mapping%20and%20assessment%20of%20damage%20after%20these%20events%20could%20be%20improved%20by%20making%20ice%20accretion%20measurements%20at%20a%20greater%20number%20of%20sites%20than%20is%20currently%20available.%20There%20is%20a%20need%20for%20low-cost%20collectors%20that%20can%20be%20distributed%20broadly%20in%20volunteer%20observation%20networks%3B%20however%2C%20use%20of%20low-cost%20collectors%20necessitates%20understanding%20of%20how%20collector%20characteristics%20and%20configurations%20influence%20measurements%20of%20ice%20accretion.%20A%20study%20was%20conducted%20at%20the%20Hubbard%20Brook%20Experimental%20Forest%20in%20New%20Hampshire%20that%20involved%20spraying%20water%20over%20passive%20ice%20collectors%20during%20freezing%20conditions%20to%20simulate%20ice%20storms%20of%20different%20intensity.%20The%20collectors%20consisted%20of%20plates%20composed%20of%20four%20different%20materials%20and%20installed%20horizontally%3B%20two%20different%20types%20of%20wires%20strung%20horizontally%3B%20and%20rods%20of%20three%20different%20materials%2C%20with%20three%20different%20diameters%2C%20and%20installed%20at%20three%20different%20inclinations.%20Results%20showed%20that%20planar%20ice%20thickness%20on%20plates%20was%202.5%5Cu20133%20times%20as%20great%20as%20the%20radial%20ice%20thickness%20on%20rods%20or%20wires%2C%20which%20is%20consistent%20with%20expectations%20based%20on%20theory%20and%20empirical%20evidence%20from%20previous%20studies.%20Rods%20mounted%20on%20an%20angle%20rather%20than%20horizontally%20reduced%20the%20formation%20of%20icicles%20and%20enabled%20more%20consistent%20measurements.%20Results%20such%20as%20these%20provide%20much%20needed%20information%20for%20comparing%20ice%20accretion%20data.%20Understanding%20of%20relationships%20among%20collector%20configurations%20could%20be%20refined%20further%20by%20collecting%20data%20from%20natural%20ice%20storms%20under%20a%20broader%20range%20of%20weather%20conditions.%3C%5C%2Fp%3E%3C%5C%2Fsection%3E%22%2C%22date%22%3A%222020%5C%2F09%5C%2F09%22%2C%22language%22%3A%22EN%22%2C%22DOI%22%3A%2210.1175%5C%2FJAMC-D-19-0280.1%22%2C%22ISSN%22%3A%221558-8424%2C%201558-8432%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fapme%5C%2F59%5C%2F9%5C%2FjamcD190280.xml%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A33%3A51Z%22%7D%7D%2C%7B%22key%22%3A%2266ICVVFW%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Campbell%20et%20al.%22%2C%22parsedDate%22%3A%222020-06-30%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECampbell%2C%20J.%20L.%2C%20Rustad%2C%20L.%20E.%2C%20Driscoll%2C%20C.%20T.%2C%20Halm%2C%20I.%2C%20Fahey%2C%20T.%20J.%2C%20Fakhraei%2C%20H.%2C%20Groffman%2C%20P.%20M.%2C%20Hawley%2C%20G.%20J.%2C%20Leuenberger%2C%20W.%2C%20%26amp%3B%20Schaberg%2C%20P.%20G.%20%282020%29.%20Simulating%20Impacts%20of%20Ice%20Storms%20on%20Forest%20Ecosystems.%20%3Ci%3EJournal%20of%20Visualized%20Experiments%3C%5C%2Fi%3E%2C%20%3Ci%3E160%3C%5C%2Fi%3E%2C%2061492.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3791%5C%2F61492%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3791%5C%2F61492%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Simulating%20Impacts%20of%20Ice%20Storms%20on%20Forest%20Ecosystems%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%20E.%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charles%20T.%22%2C%22lastName%22%3A%22Driscoll%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Halm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Timothy%20J.%22%2C%22lastName%22%3A%22Fahey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Habibollah%22%2C%22lastName%22%3A%22Fakhraei%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%20M.%22%2C%22lastName%22%3A%22Groffman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gary%20J.%22%2C%22lastName%22%3A%22Hawley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wendy%22%2C%22lastName%22%3A%22Leuenberger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20G.%22%2C%22lastName%22%3A%22Schaberg%22%7D%5D%2C%22abstractNote%22%3A%22Ice%20storms%20can%20have%20profound%20and%20lasting%20effects%20on%20the%20structure%20and%20function%20of%20forest%20ecosystems%20in%20regions%20that%20experience%20freezing%20conditions.%20Current%20models%20suggest%20that%20the%20frequency%20and%20intensity%20of%20ice%20storms%20could%20increase%20over%20the%20coming%20decades%20in%20response%20to%20changes%20in%20climate%2C%20heightening%20interest%20in%20understanding%20their%20impacts.%20Because%20of%20the%20stochastic%20nature%20of%20ice%20storms%20and%20difficulties%20in%20predicting%20when%20and%20where%20they%20will%20occur%2C%20most%20past%20investigations%20of%20the%20ecological%20effects%20of%20ice%20storms%20have%20been%20based%20on%20case%20studies%20following%20major%20storms.%20Since%20intense%20ice%20storms%20are%20exceedingly%20rare%20events%20it%20is%20impractical%20to%20study%20them%20by%20waiting%20for%20their%20natural%20occurrence.%20Here%20we%20present%20a%20novel%20alternative%20experimental%20approach%2C%20involving%20the%20simulation%20of%20glaze%20ice%20events%20on%20forest%20plots%20under%20field%20conditions.%20With%20this%20method%2C%20water%20is%20pumped%20from%20a%20stream%20or%20lake%20and%20sprayed%20above%20the%20forest%20canopy%20when%20air%20temperatures%20are%20below%20freezing.%20The%20water%20rains%20down%20and%20freezes%20upon%20contact%20with%20cold%20surfaces.%20As%20the%20ice%20accumulates%20on%20trees%2C%20the%20boles%20and%20branches%20bend%20and%20break%3B%20damage%20that%20can%20be%20quantified%20through%20comparisons%20with%20untreated%20reference%20stands.%20The%20experimental%20approach%20described%20is%20advantageous%20because%20it%20enables%20control%20over%20the%20timing%20and%20amount%20of%20ice%20applied.%20Creating%20ice%20storms%20of%20different%20frequency%20and%20intensity%20makes%20it%20possible%20to%20identify%20critical%20ecological%20thresholds%20necessary%20for%20predicting%20and%20preparing%20for%20ice%20storm%20impacts.%22%2C%22date%22%3A%222020-6-30%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3791%5C%2F61492%22%2C%22ISSN%22%3A%221940-087X%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.jove.com%5C%2Fvideo%5C%2F61492%5C%2Fsimulating-impacts-of-ice-storms-on-forest-ecosystems%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A24%3A27Z%22%7D%7D%2C%7B%22key%22%3A%22TDM6ULFA%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Green%20et%20al.%22%2C%22parsedDate%22%3A%222018-05-07%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EGreen%2C%20M.%20B.%2C%20Campbell%2C%20J.%20L.%2C%20Yanai%2C%20R.%20D.%2C%20Bailey%2C%20S.%20W.%2C%20Bailey%2C%20A.%20S.%2C%20Grant%2C%20N.%2C%20Halm%2C%20I.%2C%20Kelsey%2C%20E.%20P.%2C%20%26amp%3B%20Rustad%2C%20L.%20E.%20%282018%29.%20Downsizing%20a%20long-term%20precipitation%20network%3A%20Using%20a%20quantitative%20approach%20to%20inform%20difficult%20decisions.%20%3Ci%3EPLOS%20ONE%3C%5C%2Fi%3E%2C%20%3Ci%3E13%3C%5C%2Fi%3E%285%29%2C%20e0195966.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0195966%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0195966%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Downsizing%20a%20long-term%20precipitation%20network%3A%20Using%20a%20quantitative%20approach%20to%20inform%20difficult%20decisions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20B.%22%2C%22lastName%22%3A%22Green%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%20L.%22%2C%22lastName%22%3A%22Campbell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruth%20D.%22%2C%22lastName%22%3A%22Yanai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Scott%20W.%22%2C%22lastName%22%3A%22Bailey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Amey%20S.%22%2C%22lastName%22%3A%22Bailey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%22%2C%22lastName%22%3A%22Grant%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Halm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%20P.%22%2C%22lastName%22%3A%22Kelsey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%20E.%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22editor%22%2C%22firstName%22%3A%22Julia%20A.%22%2C%22lastName%22%3A%22Jones%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222018-5-7%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1371%5C%2Fjournal.pone.0195966%22%2C%22ISSN%22%3A%221932-6203%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.plos.org%5C%2F10.1371%5C%2Fjournal.pone.0195966%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T17%3A57%3A07Z%22%7D%7D%2C%7B%22key%22%3A%22WVSAKFEG%22%2C%22library%22%3A%7B%22id%22%3A4549695%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Templer%20et%20al.%22%2C%22parsedDate%22%3A%222017-02-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ETempler%2C%20P.%20H.%2C%20Reinmann%2C%20A.%20B.%2C%20Sanders-DeMott%2C%20R.%2C%20Sorensen%2C%20P.%20O.%2C%20Juice%2C%20S.%20M.%2C%20Bowles%2C%20F.%2C%20Sofen%2C%20L.%20E.%2C%20Harrison%2C%20J.%20L.%2C%20Halm%2C%20I.%2C%20Rustad%2C%20L.%2C%20Martin%2C%20M.%20E.%2C%20%26amp%3B%20Grant%2C%20N.%20%282017%29.%20Climate%20Change%20Across%20Seasons%20Experiment%20%28CCASE%29%3A%20A%20new%20method%20for%20simulating%20future%20climate%20in%20seasonally%20snow-covered%20ecosystems.%20%3Ci%3EPLOS%20ONE%3C%5C%2Fi%3E%2C%20%3Ci%3E12%3C%5C%2Fi%3E%282%29%2C%20e0171928.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0171928%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1371%5C%2Fjournal.pone.0171928%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Climate%20Change%20Across%20Seasons%20Experiment%20%28CCASE%29%3A%20A%20new%20method%20for%20simulating%20future%20climate%20in%20seasonally%20snow-covered%20ecosystems%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pamela%20H.%22%2C%22lastName%22%3A%22Templer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20B.%22%2C%22lastName%22%3A%22Reinmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebecca%22%2C%22lastName%22%3A%22Sanders-DeMott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patrick%20O.%22%2C%22lastName%22%3A%22Sorensen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephanie%20M.%22%2C%22lastName%22%3A%22Juice%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Francis%22%2C%22lastName%22%3A%22Bowles%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20E.%22%2C%22lastName%22%3A%22Sofen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jamie%20L.%22%2C%22lastName%22%3A%22Harrison%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ian%22%2C%22lastName%22%3A%22Halm%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lindsey%22%2C%22lastName%22%3A%22Rustad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mary%20E.%22%2C%22lastName%22%3A%22Martin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%22%2C%22lastName%22%3A%22Grant%22%7D%5D%2C%22abstractNote%22%3A%22Climate%20models%20project%20an%20increase%20in%20mean%20annual%20air%20temperatures%20and%20a%20reduction%20in%20the%20depth%20and%20duration%20of%20winter%20snowpack%20for%20many%20mid%20and%20high%20latitude%20and%20high%20elevation%20seasonally%20snow-covered%20ecosystems%20over%20the%20next%20century.%20The%20combined%20effects%20of%20these%20changes%20in%20climate%20will%20lead%20to%20warmer%20soils%20in%20the%20growing%20season%20and%20increased%20frequency%20of%20soil%20freeze-thaw%20cycles%20%28FTCs%29%20in%20winter%20due%20to%20the%20loss%20of%20a%20continuous%2C%20insulating%20snowpack.%20Previous%20experiments%20have%20warmed%20soils%20or%20removed%20snow%20via%20shoveling%20or%20with%20shelters%20to%20mimic%20projected%20declines%20in%20the%20winter%20snowpack.%20To%20our%20knowledge%2C%20no%20experiment%20has%20examined%20the%20interactive%20effects%20of%20declining%20snowpack%20and%20increased%20frequency%20of%20soil%20FTCs%2C%20combined%20with%20soil%20warming%20in%20the%20snow-free%20season%20on%20terrestrial%20ecosystems.%20In%20addition%2C%20none%20have%20mimicked%20directly%20the%20projected%20increase%20in%20soil%20FTC%20frequency%20in%20tall%20statured%20forests%20that%20is%20expected%20as%20a%20result%20of%20a%20loss%20of%20insulating%20snow%20in%20winter.%20We%20established%20the%20Climate%20Change%20Across%20Seasons%20Experiment%20%28CCASE%29%20at%20Hubbard%20Brook%20Experimental%20Forest%20in%20the%20White%20Mountains%20of%20New%20Hampshire%20in%202012%20to%20assess%20the%20combined%20effects%20of%20these%20changes%20in%20climate%20on%20a%20variety%20of%20pedoclimate%20conditions%2C%20biogeochemical%20processes%2C%20and%20ecology%20of%20northern%20hardwood%20forests.%20This%20paper%20demonstrates%20the%20feasibility%20of%20creating%20soil%20FTC%20events%20in%20a%20tall%20statured%20ecosystem%20in%20winter%20to%20simulate%20the%20projected%20increase%20in%20soil%20FTC%20frequency%20over%20the%20next%20century%20and%20combines%20this%20projected%20change%20in%20winter%20climate%20with%20ecosystem%20warming%20throughout%20the%20snow-free%20season.%20Together%2C%20this%20experiment%20provides%20a%20new%20and%20more%20comprehensive%20approach%20for%20climate%20change%20experiments%20that%20can%20be%20adopted%20in%20other%20seasonally%20snow-covered%20ecosystems%20to%20simulate%20expected%20changes%20resulting%20from%20global%20air%20temperature%20rise.%22%2C%22date%22%3A%22Feb%2016%2C%202017%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1371%5C%2Fjournal.pone.0171928%22%2C%22ISSN%22%3A%221932-6203%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fjournals.plos.org%5C%2Fplosone%5C%2Farticle%3Fid%3D10.1371%5C%2Fjournal.pone.0171928%22%2C%22collections%22%3A%5B%22J9HXJ926%22%5D%2C%22dateModified%22%3A%222022-06-09T19%3A50%3A53Z%22%7D%7D%5D%7D
Rustad, L. E., Campbell, J. L., Driscoll, C. T., Fahey, T. J., Groffman, P. M., Schaberg, P. G., Hawley, G. J., Halm, I., Bowles, F., Leuenberger, W., Schwaner, G., Winant, G., & Leonardi, B. (2020). Experimental approach and initial forest response to a simulated ice storm experiment in a northern hardwood forest. PLOS ONE, 15(9), e0239619. https://doi.org/10.1371/journal.pone.0239619
Campbell, J. L., Rustad, L. E., Garlick, S., Newman, N., Stanovick, J. S., Halm, I., Driscoll, C. T., Barjenbruch, B. L., Burakowski, E., Hilberg, S. D., Sanders, K. J., Shafer, J. C., & Doesken, N. J. (2020). A Comparison of Low-Cost Collector Configurations for Quantifying Ice Accretion. Journal of Applied Meteorology and Climatology, 59(9), 1429–1442. https://doi.org/10.1175/JAMC-D-19-0280.1
Campbell, J. L., Rustad, L. E., Driscoll, C. T., Halm, I., Fahey, T. J., Fakhraei, H., Groffman, P. M., Hawley, G. J., Leuenberger, W., & Schaberg, P. G. (2020). Simulating Impacts of Ice Storms on Forest Ecosystems. Journal of Visualized Experiments, 160, 61492. https://doi.org/10.3791/61492
Green, M. B., Campbell, J. L., Yanai, R. D., Bailey, S. W., Bailey, A. S., Grant, N., Halm, I., Kelsey, E. P., & Rustad, L. E. (2018). Downsizing a long-term precipitation network: Using a quantitative approach to inform difficult decisions. PLOS ONE, 13(5), e0195966. https://doi.org/10.1371/journal.pone.0195966
Templer, P. H., Reinmann, A. B., Sanders-DeMott, R., Sorensen, P. O., Juice, S. M., Bowles, F., Sofen, L. E., Harrison, J. L., Halm, I., Rustad, L., Martin, M. E., & Grant, N. (2017). Climate Change Across Seasons Experiment (CCASE): A new method for simulating future climate in seasonally snow-covered ecosystems. PLOS ONE, 12(2), e0171928. https://doi.org/10.1371/journal.pone.0171928