Title | Reduced snow cover alters root-microbe interactions and decreases nitrification rates in a northern hardwood forest |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Sorensen, PO, Templer, PH, Christenson, LM, Duran, J, Fahey, TJ, Fisk, MC, Groffman, PM, Morse, JL, Finzi, AC |
Journal | Ecology |
Volume | 97 |
Issue | 12 |
Pagination | 3359 - 3368 |
Date Published | 2016/12/01/ |
ISBN Number | 1939-9170 |
Keywords | Hubbard Brook, nitrification, phenol oxidase, root production, snow, Soil frost, sugar maple (Acer saccharum) |
Abstract | Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2 mm pore size) or excluded root ingrowth (50 μm pore size) for up to 29 months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P |
URL | http://onlinelibrary.wiley.com/doi/10.1002/ecy.1599/abstract |
Short Title | Ecology |