Hydrologic flowpaths during snowmelt in forested headwater catchments under differing winter climatic and soil frost regimes

TitleHydrologic flowpaths during snowmelt in forested headwater catchments under differing winter climatic and soil frost regimes
Publication TypeJournal Article
Year of Publication2016
AuthorsFuss, CB, Driscoll, CT, Green, MB, Groffman, PM
JournalHydrological Processes
Paginationn/a - n/a
Date Published2016/07/01/
ISBN Number1099-1085
Keywordsend-member mixing analysis, flowpaths, forested catchments, snowmelt, Soil frost
Abstract

Changes in hydrologic flowpaths have important impacts on the timing, magnitude, and hydrochemistry of runoff during snowmelt in forested catchments, but how flowpaths are affected by variation in winter climate and the irregular presence of soil frost remains poorly understood. The depth and extent of soil frost may be expected to increase as snowpack decreases or develops later due to climate change. In this study we used end-member mixing analysis (EMMA) to determine daily contributions of snow, forest floor soil water, and groundwater to stream runoff during snowmelt under different soil frost regimes resulting from interannual and elevational variation at the Hubbard Brook Experimental Forest in New Hampshire, USA. We observed greater routing of runoff through forest floor flowpaths during early snowmelt in 2011, when the snowpack was deep and soil frost was minimal, compared to the early snowmelt in 2012 under conditions of deep and extensive soil frost. The results indicate that widespread soil frost that penetrated the depth of the forest floor decreased the flow signal through the shallowest subsurface flowpaths, but did not reduce overall infiltration of melt waters, as the contribution from the snow-precipitation end-member was similar under both conditions. These results are consistent with development of granular soil frost which permits vertical infiltration of melt waters, but either reduces lateral flow in the forest floor or prevents the solute exchange that would produce the typical chemical signature of shallow subsurface flowpaths in streamwater.

URLhttp://onlinelibrary.wiley.com/doi/10.1002/hyp.10956/abstract
Short TitleHydrol. Process.