Decreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems

TitleDecreased atmospheric nitrogen deposition in eastern North America: Predicted responses of forest ecosystems
Publication TypeJournal Article
Year of Publication2019
AuthorsGilliam, FS, Burns, DA, Driscoll, CT, Frey, SD, Lovett, GM, Watmough, SA
JournalEnvironmental Pollution
Volume244
Pagination560 - 574
Date Published2019/01/01/
ISBN Number0269-7491
KeywordsClean Air Act, Decreased nitrogen deposition, Eastern deciduous forest, Forest ecosystems, nitrogen biogeochemistry
Abstract

Historical increases in emissions and atmospheric deposition of oxidized and reduced nitrogen (N) provided the impetus for extensive, global-scale research investigating the effects of excess N in terrestrial and aquatic ecosystems, with several regions within the Eastern Deciduous Forest of the United States found to be susceptible to negative effects of excess N. The Clean Air Act and associated rules have led to decreases in emissions and deposition of oxidized N, especially in eastern U.S., representing a research challenge and opportunity for ecosystem ecologists and biogeochemists. The purpose of this paper is to predict changes in the structure and function of North American forest ecosystems in a future of decreased N deposition. Hysteresis is a property of a system wherein output is not a strict function of corresponding input, incorporating lag, delay, or history dependence, particularly when the response to decreasing input is different from the response to increasing input. We suggest a conceptual hysteretic model predicting varying lag times in recovery of soil acidification, plant biodiversity, soil microbial communities, forest carbon (C) and N cycling, and surface water chemistry toward pre-N impact conditions. Nearly all of these can potentially respond strongly to reductions in N deposition. Most responses are expected to show some degree of hysteresis, with the greatest delays in response occurring in processes most tightly linked to “slow pools” of N in wood and soil organic matter. Because experimental studies of declines in N loads in forests of North America are lacking and because of the expected hysteresis, it is difficult to generalize from experimental results to patterns expected from declining N deposition. These will likely be long-term phenomena, difficult to distinguish from other, concurrent environmental changes, including elevated atmospheric CO2, climate change, reductions in acidity, invasions of new species, and long-term vegetation responses to past disturbance.

URLhttp://www.sciencedirect.com/science/article/pii/S0269749118325983
DOI10.1016/j.envpol.2018.09.135
StartPage

560560

EndPage

574574

Short TitleEnvironmental Pollution