Declines in northern forest tree growth following snowpack decline and soil freezing

TitleDeclines in northern forest tree growth following snowpack decline and soil freezing
Publication TypeJournal Article
Year of Publication2019
AuthorsReinmann, AB, Susser, JR, Demaria, EMC, Templer, PH
JournalGlobal Change Biology
Volume25
Issue2
Pagination420 - 430
Date Published2019///
ISBN Number1365-2486
Keywordssnow depth, snowpack, Soil freezing, Soil frost, sugar maple, tree growth, winter climate change
Abstract

Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow-covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5-year snow-removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional-scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow-covered forests.

URLhttps://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14420
DOI10.1111/gcb.14420
StartPage

420420

EndPage

430430